CO₂ CAPTURE FROM BINARY GAS MIXTURE VIA CLATHRATE HYDRATES FORMATION: INVESTIGATION BY RAMAN SCATTERING

Bertrand Chazallon

Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), UMR CNRS 8523, University Lille1 Bat. P5, F-59655 Villeneuve d'Ascq FRANCE

ABSTRACT

The global greenhouse effect of CO_2 has attracted increased attention as a worldwide problem. CO_2 capture and sequestration (CCS) for industry is a great challenge that is susceptible to reduce carbon emission. Exhausting gases from industry contains CO₂, N₂, CH₄, O₂ in localized areas: steelmaking plants, gas or coal power plants, chemical plants, etc. In post combustion capture, CO2 concentration is generally low; typically 5-10% for power plants, but it can be higher: up to 40% in steelmaking plants, or also in some cases of natural gas production. Different strategies and technologies of capture need to be developed to decrease the cost of the process, in respect to the specific compositions and operative conditions, especially pressure. Gas hydrates are currently getting a significant attention as a potential CO₂ storage technology. The equilibrium properties of CO₂-N₂ gas hydrates are investigated by p-T and in-situ Raman spectroscopy. sI and sII structures are identified depending on the loading or equilibrium composition [1]. The equilibrium properties of CO₂xTBAB-H₂O (with x = 40 wt%, 5 wt%) hydrates and N₂-xTBAB-H₂O (with x =5wt%) are determined and the structure (type A or B) is found to depend on the equilibrium (or loading) pressure of CO₂ or N₂. It is the first time that an inversion of the stable phase of tetra-n-butyl ammonium bromide (TBAB) is observed when a gas (CO_2 or N_2) is trapped in the water cages [2].

[1] B. Chazallon, **CO**₂ capture by gas hydrate crystallization: investigation of equilibrium and compositional properties by micro-Raman spectroscopy, *in* Physics and Chemistry of Ice, Y. Furukawa, G. Sazaki, T. Uchida, N. Watanabe Eds, Hokkaido University Press, , ISBN 978-4-8329-0361-6, pp 173-181 (2011)

[2] B. Chazallon, Binary CO₂-N₂ clathrate hydrates of TBAB investigated by Raman scattering, J. Phys.Chem.C, in prep.