Coherent superflash effect in cold atoms: Revealing forward scattering field in optically thick medium

David Wilkowski

School of Physical and Mathematical Science (NTU, Singapore)

Center for Quantum Technologies (NUS, Singapore) Institut NonLineaire de Nice (UNS, France) UMI Merlion-MajuLab (France/Singapore) WEIN

Outline of the talk

Coherent transmission in the stationary regime Beer-Lambert law and **forward scattering field** How to measure the forward scattering field? Maximum intensity using energy conservation argument

Transient regime

 Forward scattering and coherent (super)flash of light Phase and intensity measurement Dicke superradiance and coherent (super)flash?

Conclusion

Group II
Ultracold gases

Centre for

Quantum

Technologies

Incoherent and coherent scattering

Coherent transmission: $I_t = I_0 \exp(-b)$ (Beer-Lambert law) $b = \rho \sigma L$ is the optical thickness

Group II
Ultracold gases

Centre for Quantum Technologies

Coherent transmission set up

How to measure the forward scattering intensity?

Our starting point is: $E_t = E_0 + E_s$

At $t = 0$, we abruptly switch the incident field off

(Free induction decay (b ≪ 1): First introduced in NMR [E. Hahn, Phys. Rev. **77**, 297 (1950)])

We get:
$$
E_t(t = 0^+) = \sum_{s} + E_s
$$

Thus: $I_s = I_t(t = 0^+)$

The switching time is challenging since it should be much faster than medium response time (two-level atom: Γ ⁻¹) For this purpose we use the "very slow" intercombination line of atomic strontium Γ^{-1} = 21 µs

Group II
Ultracold gases

Technologies

Forward scattering field maximum intensity?

Our starting point: $E_t = E_0 + E_s$ The energy conservation law imposes: $I_t \leq I_0$, then $I_s \leq 4I_0$

However, since the scattering field is built upon the incident field, we might believe that $I_{\rm s} \leq I_0$

- True for $b \gg 1$:
- $I_t = I_0$ exp $(-b) \simeq 0$ and $I_s \simeq I_0$

 $I_s \leq I_0$ -> Coherent Flash of Light

[M. Chalony et *al*, *Phys. Rev. A*, **84,** 011401 (2011)]

If $I_s > I_0$ we get a coherent superflash

Group II
Ultracold gases

:entre for **rechnologies**

Forward scattering field intensity

Superflash peak intensity: theory predictions

$b_0 \gg 1$ and $\delta \gg \Gamma$ we expect $I_s = 4I_0$, with $I_t = I_0$

Université nice sophia Antipolis

Group II
Ultracold gases

Centre for **Ouantum** Technologies

Forward scattering field reconstruction

Forward scattering field reconstruction

"Normal" flash: $I_s < I_0$ Superflash: $I_s > I_0$

> $b₀ = 3$ $b₀ = 19$

> > Data points (reconstruction method) Data points (phase rotation method)

 $\,$ $\,$ $\,$

Group II
Ultracold gases

Coherent (super)flash and Dicke superradiance ?

- Dicke has considered an ensemble of excited state atoms. From this initial preparation, a macroscopic polarization is built during spontaneous emission leading to the so-called Dicke superradiance (DS) [RH Dicke. *Phys. Rev.* **93,** 99 (1954)]
- One experimental signature of DS is the short emission of radiators ensemble

From: M. Gross and S. Haroche, Phys. Rep. **93**, 301 (1982)

In the coherent superflash experiment, the macroscopic polarization of the medium comes from the laser excitation. The 2 phenomena (Coherent flash and DS) lead to the same cooperative emission, with the same decay time $(b_0 \Gamma)^{-1}$

[R Friedberg and SR Hartmann, Phys. Rev. *A* **13**, 495 (1976)]

Group II
Ultracold gases

Centre for Quantum **Technologies**

Flash decay time

We calculate the initial decay time of the (super)flash:

 $\tau =$ $dI(0^+)$ dt 1 $\frac{1}{I(0^+)} =$ 2 $\Gamma b_0(0)$ $1 + \exp(-b) - 2 \exp(-b/2) \cos(\theta_t)$ $1 - \exp(-b/2)\cos(\theta_t)$ $\tau \Gamma =$ $\delta \rightarrow 0$ 2 $b_0(0)$ τ = $\delta \rightarrow \infty$ 4 $b_0(0)$ and Same decay than the Dicke superradiance [M. Chalony, R. Pierrat, D. Delande, and D. Wilkowski, *Phys. Rev. A*, **84,** 011401 (2011)]

Where:

 $b₀(0)$ is the optical thickness at resonance and at zero temperature \bm{b} is the optical thickness at the laser frequency at the sample temperature $\boldsymbol{\theta}_t$ is the phase of the transmitted field E_t

Quantum

Technologies

(Super)flash decay time

Université $\sf\textcolor{red}{\sf\textsf{R}ice}$ SOPHIA ANTIPOLIS

Group II
Ultracold gases

Centre for **Ouantum** Technologies

 $\tau =$ $dI(0^+)$ dt 1 $I(0^+$ We measure the forward scattering field E_s of an optically thick medium. It is a cooperative emission in the forward direction.

 E_{S} is measured by switching the incident field off: $E_s = E_t(t = 0^+)$

We find that due to phase rotation of the field at $\delta \gg \Gamma$ and $b_0 \gg 1$, one has $I_s > I_0$, leading to a coherent superflash of light The value of $I_{\scriptscriptstyle S}$ is bounds to $4I_0$, limited only by the energy conservation law.

The flash decay time seems in agreement with superradiance emission decay time (work in progress).

People

Kanhaiya Pandey (post-doc)

Romain Pierrat (IL, ESPCI, Paris)

Mysore Pramod (RA)

Tao Yang (Post-Doc)

Frederic Leroux (PhD)

Dominique Delande (LKB, ENS/UPMC, Paris)

For further details see: C.C. Kwong et *a.l.* **arXiv:1405.5413**

Group II
Ultracold gases

Centre for Ouantum Technologies