

Fiodor Sorrentino **Measurement of the gravitational constant** *G* **by atom interferometry**

Dipartimento di Fisica & LENS, Università di Firenze & INFN

Misura Accurata di G mediante Interferometria Atomica

<http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html>

F. Sorrentino Measurement of the gravitational...

Misura Accurata di G mediante Interferometria Atomica

• Measure g by atom interferometry

<http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html>

F. Sorrentino Measurement of the gravitational...

Misura Accurata di G mediante Interferometria Atomica

• Measure g by atom interferometry Add source masses • Measure change of g

<http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html>

F. Sorrentino Measurement of the gravitational...

Motivation

Cavendish 1798

Zang 2009

 \bullet

- Atomic probes
• point-like test masses in free fall
- virtually insensitive to stray fields
- well know and reproducible properties
- different states, isotopes

F. Sorrentino **of all of the gravitational...**
Measurement of the gravitational...

Raman interferometry in a 87Rb atomic fountain

Phase difference between the paths: $\Delta \Phi = k_c[z(0)]2z(T)] + \Phi_e$ $k_e = k_1 - k_2$ with $z(t) = -gt^2/2 + v_0t + z_0 \& \Phi_e = 0$ \rightarrow $\Delta \Phi = k_e g T^2$

Final population: $N_a = N/2(1 + cos[\Delta \Phi])$

A. Peters et al., Nature **400**, 849 (1999) $T = 150 \text{ ms} \rightarrow 2\pi = 10^{-6} \text{ g}$ $S/N=1000 \rightarrow$ Sensitivity 10^{-9} g/shot

F. Sorrentino Measurement of the gravitational...

Atom gravimeter + source masses

Experimental sequence

• MOT + launch via moving molasses juggling the two clouds for larger n. of atoms

Experimental sequence

- MOT + launch via moving molasses juggling the two clouds for larger n. of atoms
- selection of internal state & velocity class
	- from unpolarized to $m_F=0$, from 3.5 v_{rec} to 0.3 v_{rec}
	- via Raman pulses + resonant blow-away pulses

XA

• Raman interferometry sequence around apogee

Experimental sequence

- MOT + launch via moving molasses juggling the two clouds for larger n. of atoms
- selection of internal state & velocity class
	- from unpolarized to $m_F=0$, from 3.5 v_{rec} to 0.3 v_{rec}
	- via Raman pulses + resonant blow-away pulses
- Raman interferometry sequence around apogee
- \bullet fluorescence detection of F=1 and F=2 populations

F. Sorrentino Measurement of the gravitational...

INFN

$$
\Delta \Phi = k_e g T^2
$$

F. Sorrentino Measurement of the gravitational...

INFI

 $T=5$ ms resol. $= 2.3 \times 10^{-5}$ g/shot

 $T=50$ ms resol. $= 1.0 \times 10^{-6}$ g/shot

$$
\Delta \Phi = k_e g T^2
$$

F. Sorrentino Measurement of the gravitational...

 $T=5$ ms

resol. $= 2.3 \times 10^{-5}$ g/shot

 $T=150$ ms resol. $= 3.2 \times 10^{-8}$ g/shot

$$
\Delta \Phi = k_e g T^2
$$

F. Sorrentino Measurement of the gravitational...

2007÷2008: proof-of-principle

MAGIA

G. Lamporesi et al., Phys. Rev. Lett **100**, 050801 (2008) G = 6.667 (11) (3) m³ kg⁻¹ s⁻²

Stanford

 $G = 6.693(27)(21) \times 10^{-11}$ m^3 kg⁻¹ s⁻²

J. B. Fixler et al., Science **315**, 74 (2007)

F. Sorrentino Measurement of the gravitational...

From proof-of-principle to *G* measure

Sensitivity

- 15-fold improvement of the instrument sensitivity from 2008 to 2013
- integration time for the target 100 ppm reduced by more than a factor 200

Accuracy

- systematic uncertainty had been reduced by a factor ~10 since 2008, mostly due to
	- better characterization of source masses
	- control & mitigation of Coriolis acceleration
	- excellent control of atomic trajectories

Data analysis

- - gravitational potential from source masses
	- quantum mechanical phase shift of atomic probes
	- detection efficiency
	- measurement are compared with a Montecarlo simulation
- MAGIA @ EGAS
	- EGAS 41 (2009): F. Sorrentino
	- EGAS 43 (2011): M. Prevedelli
	- EGAS 44 (2012): G. Rosi

Improving the sensitivity

[1] G. Lamporesi et al., Phys. Rev. Lett 100, 050801 (2008)

[2] F. Sorrentino et al., New J. Phys. **12**, 095009 (2010)

F. Sorrentino^[3] F. Sorrentino et al., Phys. Rev. A 89, 023607 (2014)Measurement of the gravitational...

Pursuing the accuracy limits

- Precise characterization of source masses (weight, density homogeneity, shape, position)
- Precise characterization of atomic trajectories
- Calibration of relative detection efficiency in the two interferometer outputs
- Removal of k-independent biases (Zeeman shift)
- Removal of k-dependent biases (Coriolis acceleration)

Pursuing the accuracy limits

- Precise characterization of source masses (weight, density homogeneity, shape, position)
- **Precise characterization of atomic trajectories**
- Calibration of relative detection efficiency in the two interferometer outputs
- Removal of k-independent biases (Zeeman shift)
- **Removal of k-dependent biases (Coriolis acceleration)**

Effect of atomic trajectories

- Finite size of atomic clouds yields a bias on *G* due to the \bullet curvature of gravitational potential
	- curvature has opposite sign on horizontal plane and vertical direction
	- partial compensation of bias on *G* for finite cloud size
- Correcting for the bias requires:
	- a precise knowledge of atomic clouds density distribution along the atom interferometry sequence
	- a precise knowledge of the spatial distribution of detection efficiency

 σ

a Montecarlo simulation to calculate the corresponding phase shift \bigoplus $p(r)$, $V(r)$

 $\rho(r)$

Measurement of atomic trajectories

- Vertical coordinates measured within 0.1 mm from TOF + double diffraction
	- **corresponding error on** *G:* **57 ppm**
- Transverse density distribution measured by different methods:
	- 2D scanning of a thin portion of Raman laser beams \bullet
	- fluorescence imaging of clouds at the two passages in the detection chamber \bullet
	- Raman velocimetry \bullet
	- barycenter and width measured within 1 mm \bullet
	- **corresponding error on** *G:* **38 ppm** \bullet

Bias on *G* from Coriolis acceleration

- Transverse velocities are found in the range of a few mm/s
- These are due to small tilt (-1 mrad) of the atomic fountain

$$
\phi_{Coriol} = -2\Omega k_{eff} T^2 \cos \theta_l (v_u - v_l) \sin \theta_{tilt} \simeq -34 \theta_{tilt}
$$

- Corresponding AI phase shift due to Coriolis acceleration ~40 mrad, i. e. 10-9 g
- For a Coriolis shift below 10⁻⁴ on *G*, launching direction should change less than 2 *µrad* on average when moving the sources masses

Coriolis compensation

- Still we would need to control the C/F launching direction changes to better than 20 μ rad
- Double stage compensation: ellipse phase shift vs. rotation rate is proportional to the transverse atomic velocity difference
- When comparing for the two configurations of source masses, we determine C/F transverse velocity changes to be lower than $20 \mu m/s$
- Under the conservative assumption of Earth rotation compensation at 10%, **corresponding uncertainty on** *G* **is 36 ppm**

G measurement

From our data we deduce $G=6.67191(77)(65) m^3kg^{-1}s^{-2}$ Statistical error 116 ppm Systematic error 92 ppm

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino, *Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms*, Nature **510**, 518 (2014)

F. Sorrentino Measurement of the gravitational...

MAGIA error budget

G measurements: current status

From proof of principle to *G* measure

Thursday, July 3, 14

INFN

Atom interferometry WEP test with Sr

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, *Test of Einstein equivalence* principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects, Phys. Rev. Lett. Accepted 23 June 2014

- Boson
- Zero total spin
- 87Sr
	- Fermion
	- Total spin *I*=9/2
- First test to compare a single Boson and a single Fermion.
	- Measured **Eötvös parameter** for violation due to difference between gravitational and inertial mass: η =(0.2±1.6)×10⁻⁷
- First test to directly measure limits on EP violation for different orientations of the nuclear spin of cold atoms.
	- Measured **spin-gravity coupling** parameter: *k*=(0.5±1.1)×10[−]⁷
-

F. Sorrentino Measurement of the gravitational...

The MAGIA team

G. Rosi L. Cacciapuoti G. M. Tino

F. Sorrentino

Guglielmo M. Tino's group web page: <http://coldatoms.lens.unifi.it>

M. Prevedelli

F. Sorrentino Measurement of the gravitational...