

Measurement of the gravitational constant *G* by atom interferometry Fiodor Sorrentino

Dipartimento di Fisica & LENS, Università di Firenze & INFN

Misura Accurata di G mediante Interferometria Atomica

http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html

F. Sorrentino

Measurement of the gravitational...

Misura Accurata di G mediante Interferometria Atomica

• Measure g by atom interferometry

http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html

F. Sorrentino

Measurement of the gravitational...

Misura Accurata di G mediante Interferometria Atomica

Measure g by atom interferometry
Add source masses
Measure change of g

http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html

F. Sorrentino

Measurement of the gravitational...

Motivation

Cavendish 1798

Zang 2009

- 0
- Atomic probes
 point-like test masses in free fall
 virtually insensitive to stray fields

 - well know and reproducible properties
 - different states, isotopes 0

Measurement of the gravitational...

Thursday, July 3, 14

F. Sorrentino

Raman interferometry in a ⁸⁷Rb atomic fountain

Phase difference between the paths: $\Delta \Phi = k_c[z(0)]2z(T)] + \Phi_e$ $k_e = k_1 - k_2$ with $z(t) = -gt^2/2 + v_0t + z_0 \& \Phi_e = 0$ $\rightarrow \Delta \Phi = k_e gT^2$

Final population: $N_a = N/2(1 + \cos[\Delta \Phi])$

$$\begin{split} T &= 150 \text{ ms} \rightarrow 2\pi = 10^{-6} \text{ g} \\ \text{S/N}{=}1000 \rightarrow \text{Sensitivity } 10^{-9} \text{ g/shot} \\ \text{A. Peters et al., Nature 400, 849 (1999)} \end{split}$$

Measurement of the gravitational...

Atom gravimeter + source masses

Experimental sequence

MOT + launch via moving molasses
juggling the two clouds for larger n. of atoms

Thursday, July 3, 14

Experimental sequence

- MOT + launch via moving molasses
 juggling the two clouds for larger n. of atoms
- selection of internal state & velocity class
 - from unpolarized to $m_F=0$, from 3.5 v_{rec} to 0.3 v_{rec}
 - via Raman pulses + resonant blow-away pulses

XA

Raman interferometry sequence around apogee

F. Sorrentino

Experimental sequence

- MOT + launch via moving molasses
 juggling the two clouds for larger n. of atoms
- selection of internal state & velocity class
 - from unpolarized to $m_F=0$, from 3.5 v_{rec} to 0.3 v_{rec}
 - via Raman pulses + resonant blow-away pulses
- Raman interferometry sequence around apogee
- fluorescence detection of F=1 and F=2 populations

F. Sorrentino

Measurement of the gravitational...

INFN

T=5 ms resol. = 2.3×10^{-5} g/shot

$$\Delta \Phi = k_e g T^2$$

Measurement of the gravitational...

INF

T=5 ms resol. = 2.3×10^{-5} g/shot

T=50 ms resol. = 1.0×10^{-6} g/shot

$$\Delta \Phi = k_e g T^2$$

F. Sorrentino

Measurement of the gravitational...

T=5 ms

resol. = 2.3×10^{-5} g/shot

T=50 ms resol. = 1.0×10^{-6} g/shot

T=150 ms resol. = 3.2×10^{-8} g/shot

$$\Delta \Phi = k_e g T^2$$

F. Sorrentino

Measurement of the gravitational...

2007÷2008: proof-of-principle

MAGIA

G= 6.667 (11) (3) m³ kg⁻¹ s⁻² G. Lamporesi et al., Phys. Rev. Lett **100**, 050801 (2008)

Stanford

 $G = 6.693 (27) (21) \times 10^{-11}$ m³ kg⁻¹ s⁻²

J. B. Fixler et al., Science **315**, 74 (2007)

Measurement of the gravitational...

F. Sorrentino

From proof-of-principle to *G* measure

Sensitivity

- 15-fold improvement of the instrument sensitivity from 2008 to 2013
- integration time for the target 100 ppm reduced by more than a factor 200

Accuracy

- systematic uncertainty had been reduced by a factor ~10 since 2008, mostly due to
 - better characterization of source masses
 - control & mitigation of Coriolis acceleration
 - excellent control of atomic trajectories

Data analysis

- we developed a reliable model accounting for all of the relevant effects
 - gravitational potential from source masses
 - quantum mechanical phase shift of atomic probes
 - detection efficiency
- measurement are compared with a Montecarlo simulation

MAGIA @ EGAS

- EGAS 41 (2009): F. Sorrentino
- EGAS 43 (2011): M. Prevedelli
- EGAS 44 (2012): G. Rosi

F. Sorrentino

Improving the sensitivity

Current sensitivity to differential acceleration: 3x10⁻⁹ g @ 1s (=QPN for 4x10⁵ atoms)

[1] G. Lamporesi et al., Phys. Rev. Lett 100, 050801 (2008)

[2] F. Sorrentino et al., New J. Phys. 12, 095009 (2010)

F. Sorrentino[3] F. Sorrentino et al., Phys. Rev. A 89, 023607 (2014) Measurement of the gravitational...

Pursuing the accuracy limits

- Precise characterization of source masses (weight, density homogeneity, shape, position)
- Precise characterization of atomic trajectories
- Calibration of relative detection efficiency in the two interferometer outputs
- Removal of k-independent biases (Zeeman shift)
- Removal of k-dependent biases (Coriolis acceleration)

F. Sorrentino

Pursuing the accuracy limits

- Precise characterization of source masses (weight, density homogeneity, shape, position)
- Precise characterization of atomic trajectories
- Calibration of relative detection efficiency in the two interferometer outputs
- Removal of k-independent biases (Zeeman shift)
- Removal of k-dependent biases (Coriolis acceleration)

F. Sorrentino

Effect of atomic trajectories

- Finite size of atomic clouds yields a bias on *G* due to the curvature of gravitational potential
 - curvature has opposite sign on horizontal plane and vertical direction
 - partial compensation of bias on *G* for finite cloud size
- Correcting for the bias requires:
 - a precise knowledge of atomic clouds density distribution along the atom interferometry sequence
 - a precise knowledge of the spatial distribution of detection efficiency

σ

• a Montecarlo simulation to calculate the corresponding phase shift $\oint \rho(r), V(r)$

 $\rho(r)$

Measurement of atomic trajectories

- Vertical coordinates measured within 0.1 mm from TOF + double diffraction
 - corresponding error on G: 57 ppm
- Transverse density distribution measured by different methods:
 - 2D scanning of a thin portion of Raman laser beams
 - fluorescence imaging of clouds at the two passages in the detection chamber
 - Raman velocimetry
 - barycenter and width measured within 1 mm
 - corresponding error on G: 38 ppm

Bias on *G* from Coriolis acceleration

INFN

- Transverse velocities are found in the range of a few mm/s
- These are due to small tilt (~1 mrad) of the atomic fountain

$$\phi_{Coriol} = -2\Omega k_{eff} T^2 \cos \theta_l (v_u - v_l) \sin \theta_{tilt} \simeq -34\theta_{tilt}$$

- Corresponding AI phase shift due to Coriolis acceleration ~40 mrad, i. e. 10⁻⁹ g
- For a Coriolis shift below 10⁻⁴ on *G*, launching direction should change **less than 2 μrad** on average when moving the sources masses

Coriolis compensation

- We reduce the frame rotation by at least a factor 10 with a tip-tilt Raman retro-reflecting mirror [M. Hogan et al., Proc. intern. school of physics Enrico Fermi CLXVIII, 411 (2007)]
- Still we would need to control the C/F launching direction changes to better than 20 μ rad
- Double stage compensation: ellipse phase shift vs. rotation rate is proportional to the transverse atomic velocity difference
- When comparing for the two configurations of source masses, we determine C/F transverse velocity changes to be lower than 20 μ m/s
- Under the conservative assumption of Earth rotation compensation at 10%, corresponding uncertainty on G is 36 ppm

G measurement

From our data we deduce G=6.67191(77)(65)m³kg⁻¹s⁻² Statistical error 116 ppm Systematic error 92 ppm

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino, *Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms*, Nature **510**, 518 (2014)

F. Sorrentino

Measurement of the gravitational...

MAGIA error budget

U

	Uncertainty on parameter	Relative correction on G (ppm)	Relative uncertainty on G (ppm)	
Air density	10%	60	6	
Apogee time	$30\mu{ m s}$		6	
Atomic clouds horizontal size	$0.5 \mathrm{~mm}$		24	
Atomic clouds vertical size	$0.1 \mathrm{mm}$		56	
Atomic clouds horizontal position	$1 \mathrm{mm}$		37	
Atomic clouds vertical position	$0.1 \mathrm{mm}$		5	
Atoms launch direction change C/F	$8\mu { m rad}$		36	
Cylinders density homogeneity	10^{-4}	91	18	
Cylinders radial position	$10\mu{ m m}$		38	
Ellipse fit		-13	4	
Size of detection region	$1\mathrm{mm}$		13	
Support platforms' mass	10 g		5	
Translation stages position	$0.5\mathrm{mm}$		6	
Other effects		<2	1	
Systematic uncertainty			92	
Statistical uncertainty			116	
Total		137	148	
F. Sorrentino		Measurement of the gravitational		

G measurements: current status

From proof of principle to G measure

INFN

Atom interferometry WEP test with Sr

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, *Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects*, Phys. Rev. Lett. Accepted 23 June 2014

- Boson
- Zero total spin
- ⁸⁷Sr
 - Fermion
 - Total spin *I*=9/2
- T, t, g G BTST BBST D C T T C C T C C T C C T T C T T
- First test to compare a single Boson and a single Fermion.
 - Measured **Eötvös parameter** for violation due to difference between gravitational and inertial mass: $\eta = (0.2 \pm 1.6) \times 10^{-7}$
- First test to directly measure limits on EP violation for different orientations of the nuclear spin of cold atoms.
 - Measured **spin-gravity coupling** parameter: $k = (0.5 \pm 1.1) \times 10^{-7}$
- F. Sorrentino

Measurement of the gravitational...

The MAGIA team

G. Rosi

G. M. Tino

L. Cacciapuoti

F. Sorrentino F. Sorrentino Guglielmo M. Tino's group web page: <u>http://coldatoms.lens.unifi.it</u>

M. Prevedelli

Measurement of the gravitational...