

Resonant Interactions between two Rydberg Atoms

Sylvain Ravets, Henning Labuhn, Daniel Barredo,

Thierry Lahaye, Antoine Browaeys

July, 2014

Quantum state engineering with individual neutral atoms

 Quantum information, metrology, simulation (entangled states ⇒ interaction)

M. Saffman et al., Rev. Mod. Phys. 82 (2010)

- Isolate and control single atoms:
 - Arrays of traps
 - d ~ a few microns
- Interaction: Rydberg atoms

n >> 1 Large dipole moments

Resonant dipole-dipole interactions between Rydberg atoms

Need for strong and tunable interactions
→ use resonant interactions (∝1/R³) controlled by electric fields (Förster resonance).

See Gallagher, Pillet, Saffman, Pfau, Weidemüller,...

Leads to energy transport in disordered media.

Indirect evidences of coherence at resonance:

M. Mudrich, *et al.* Phys. Rev. Lett. **95** (2005) J. Nipper, *et al.* Phys. Rev. Lett. **108** (2012)

Our setup

Production of traps arrays Control of electric fields Excitation to Rydberg states

Single atoms in microscopic dipole traps

- ~1µm dipole trap: only one atom trapped due to light-assisted collisions
- Spatial Light Modulator: easily reconfigurable trap geometry

Nogrette et al., Phys. Rev. X 4 (2014)

Control of static electric fields

 Rydberg states : high polarizability / sensitivity to electric fields

 Control of *E*-field: 8 electrodes (compensation, control of interaction)

See also: Löw, et al., J. Phys. B: At. Mol. Opt. Phys. 45 (2013)

Single atom Rydberg excitation

Resonant Interaction between two Rydberg Atoms

Tuning two atoms to a Förster resonance

Interactions between two Rydberg atoms

2-atom basis: $\{ |\phi_{nn'}\rangle = |n,l\rangle \otimes |n',l'\rangle \}$

Interactions between two Rydberg atoms

$$\begin{array}{c} \mathbf{A} \\ \mathbf{F} \\ \mathbf{R} \\ \mathbf{R} \end{array} \\ \mathbf{F} \\ \mathbf{R} \\ \mathbf{R} \end{array} \\ \mathbf{F} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{F} \\ \mathbf{R} \\ \mathbf{R}$$

2-atom basis: $\{ |\phi_{nn'}\rangle = |n,l\rangle \otimes |n',l'\rangle \}$

Van der Waals regime:

$$\Delta E_{dd} = \frac{C_6}{R^6}$$

Tuning two atoms to resonance

2-atom basis: $\{ |\phi_{nn'}\rangle = |n,l\rangle \otimes |n',l'\rangle \}$

Tuning two atoms to resonance

2-atom basis: $\{ |\phi_{nn'}\rangle = |n,l\rangle \otimes |n',l'\rangle \}$

See Gallagher, Pillet, Saffman, Pfau...

Tuning two atoms to resonance

2-atom basis: $\{ |\phi_{nn'}\rangle = |n,l\rangle \otimes |n',l'\rangle \}$

Förster resonance between two atoms

• Stark-shift of the levels in the absence of coupling:

Förster resonance between two atoms

Spectroscopy of the interacting system

Coherence at a Förster Resonance

Measuring the Förster oscillation between two atoms

Expect:
$$P_{dd} = \cos^2 \frac{C_3}{R^3} \frac{t}{\hbar}$$

Observation of Forster oscillations

Electric field (mV/cm)

Observation of Forster oscillations

Observation of Forster oscillations

Measurement of the interaction energy

Measurement of the interaction energy

Outlook

Larger arrays ~ 50 atoms

Nogrette et al., PRX 4, 021034 (2014)

 Quantum simulation of spin Hamiltonians, coherent energy transfer... in many-body systems.