

Quantum interferometry in the time domain using massive particles

Philipp Geyer, Jonas Rodewald, Nadine Dörre, Philipp Haslinger and Markus Arndt

Quantum nanophysics, VCQ, University of Vienna

EGAS46 - 2014 Philipp Geyer

Motivation

Foundations of quantum physics

- Exploring the mass limits of the wave particle duality
 - Testing collapse models
- Decoherence studies
 - Photofragmentation decoherence
 - Collisional decoherence

Applications: Precise measurements of nanoparticle properties

- Absorption spectroscopy
- Polarisability spectroscopy
- Magnetic and/or electric deflectometry

Opt. Comm. 264, 326-332 (2006). Phys. Rev. A 83, 043621 (2011). New J. Phys. (2011).

Talbot-Lau interferometry

Talbot-Lau interferometry with ionizing optical gratings in the time domain

After the same time, all particles with the same mass produce the same interference pattern, regardless of their velocity!

Gratings made of laser light pulses

- Small grating period: d=78,5 nm
- No van der Waals interactions
- No velocity selection needed
- Expected visibility: $V \simeq 100\%$
- Precise timing: $\Delta t < 2$ ns
- Variable pulse energy \rightarrow fine control over grating opening fraction

OTIMA's Experimental Setup

Haslinger et. al. Nature Physics (2013) Nimmrichter et.al., NJP 13 (2011)

The OTIMA Apparatus

- Even Lavie valve (20 us)
- VUV Excimer Lasers (~7ns, 157nm)
- TOF-MS (m/Δm ~ 5000)
- 10bit 8GHz Digitizer
- Custom Acquisition Software

OTIMA's Experimental Protocol

Anthracene interference

Other Clusters of molecules that also have been interfered in the OTIMA

Single Photon Fragmentation Grating

- Van der Waals clusters ca be easly fragmented
 - Hexafluorbenzol Clusters
 - Vanillin Clusters
- No more need for single photon ionisation
- Interference with new molecules in reach

N. Dörre et. al. 2014

Alternative Experimental Protocols

- Tilt 2nd grating (few mrad)
- →k-vector orth. to mirror surface smaller, grating period longer
- →Accumulation of an effective G2-phase
 over the distance mirror-cluster beam
 → Scanning mirror-cluster distance

scans the phase

Heat the mirror over G2
→ Thermal expansion shifts G2
→ Scanning heating time scans the temperature
→ Scanning the temperature scans the phase

Outlook: Towards Large Masses

No dispersive Van-der-Waals interaction.

 \rightarrow high interference contrast expected for masses even beyond 10⁶ amu

mass	Talbot time	required velocity	required vacuua	gravitational deflection	
10 ⁶ amu	15 ms	1.3 m/s	10 ⁻⁹ mbar	4.5 mm	
10 ⁷ amu	150 ms	13 cm/s	10 ⁻¹¹ mbar	45 cm	
10 ⁸ amu	1.5 s	1.3 cm/s	10 ⁻¹² mbar	45 m	
Cooling	and/or trapping	g necessary	Requir	es a vertical inte	erferome
		Ivialiago	and/or	no gravity	

Outlook: New Molecuar Sources

- Pulsed thermal beams of slow particles (few 100m/s)
- Ideal for volatilization of fragile bio molecules
- Ideal for large tailor-made molecules

 $C_{284}H_{190}F_{320}N_4S_{12}$ m=10,123 amu

The OTIMA crew 2014

