

Matthieu Génévriez

Institute of Condensed Matter and Nanosciences Université Catholique de Louvain

Three-photon ionization of He(1s2p ³P^o) and He(1s2s ³S^e)

- EGAS 46, Lille -

Multiphoton ionization : ground state

 $\hbar\omega$

Multiphoton ionization : excited state

From the ground state :

Ponderomotive shift

From the excited state :

Dynamic Stark mixing

Expected ionization spectrum :

The intensity at which resonance occurs influences :

- Interaction time
- Number of atoms

M. Génévriez (UCLouvain) – EGAS46 8 / 19

A simple case : the $1s2s^{3}S$ state

Increased complexity : the 1s2p ³P^o state

< 🗆

UCLouvain Experiment

< □

UCLouvain Experiment

UCLouvain Experiment

M. Génévriez (UCLouvain) – EGAS46 11/19

- U

Effective Hamiltonian method

Matrix elements :

- 1. 2-electron Coulomb DVR basis + Quantum Defect Theory
- 2. Comparison with ab initio R-Matrix Floquet calculations

Durand, PRA 28 (1983) - Baker, PRA 30 (1984)

M. Génévriez (UCLouvain) – EGAS46 12/19

Effective Hamiltonian method

Matrix elements :

- 1. 2-electron Coulomb DVR basis + Quantum Defect Theory
- 2. Comparison with ab initio R-Matrix Floquet calculations

Durand, PRA 28 (1983) - Baker, PRA 30 (1984)

Effective Hamiltonian method

Model :

- 1. Time-propagation of H_{eff} for many intensities
- 2. Reconstruction of the experimental averaging and integration

Durand, PRA 28 (1983) - Baker, PRA 30 (1984)

1s2p ³P^o : linear polarization

Characteristics :

- (2+1) REMPI $M_L = \pm 1$ (0)
- (1+1+1) REMPI $M_L = 0$
- ▶ 680-730 nm
- ► $I \simeq 3 \times 10^{10}$ W/cm²

1s2p ³P^o : linear polarization

- (2+1) REMPI $M_L = \pm 1$ (0)
- (1+1+1) REMPI $M_L = 0$
- ▶ 680-730 nm
- ► $I \simeq 3 \times 10^{10}$ W/cm²

1s2p ³P^o : across the 1s2p-1s3s resonance

1s2p³P^o : linear polarization

Université catholique de Louvain

$1s2p \overline{}^{3}P^{o}$: circular polarization

Université catholique de Louvain

- In-depth study of multiphoton ionization from excited states of Helium
- Particular features due to intermediate resonances
- ▶ From (2+1) REMPI to (1+1+1) REMPI
- Influence of M_L , polarization

X. Urbain, A. O'Connor, M. Terao-Dunseath, K.M. Dunseath

More information :

M. Génévriez, X. Urbain, M. Brouri, A.P. O'Connor, K.M. Dunseath, M. Terao-Dunseath, Phys. Rev. A **89**, 053430 (2014)

Acknowledgements

Thank you for your attention !

More information :

M. Génévriez, X. Urbain, M. Brouri, A.P. O'Connor, K.M. Dunseath, M. Terao-Dunseath, Phys. Rev. A **89**, 053430 (2014)