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Outline 

1. Aims of the MIGA project 

2. MIGA principle and sensitivity 

3. Status and perspectives 

Matter-wave laser Interferometry Gravitation Antenna 
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Aims of the MIGA project 

An instrument combining atom and optical interferometry for: 

1. Geophysics - Precision measurements of the Earth gravity field 

• Gravity gradient measurements: 10−13 𝑠−2/ 𝐻𝑧 at 1 Hz 

(resolution of 1 ton of water 100 m away from the instrument) 

 Detection of gravitational signals resulting from anomalous mass fluctuations 

 Monitoring of water flows in geological reservoirs 

 Characterization of the dynamics of hydro-mechanical processes 
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2. Low frequency Gravitational Wave detection (0.1 – 10 Hz) 

• Different limitations than optical GW detectors (VIRGO, LIGO, …) 

• Many interesting astrophysical sources at low frequencies 

Aims of the MIGA project 

Compact binaries:  

 merging White-Dwarfs, neutron stars, black holes 
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The MIGA consortium 

10 year project (2013 – 2023) involving 15 research institutes & companies 

• Atomic Physics & metrology 

• Laser & optics 

• Relativity & gravitation 

• Geosciences 

MIGA infrastructure at LSBB (South-East Fr.) 

• Low noise underground lab  

• Site of geological interest 

• 200 m optical cavity, 3 atomic sensors 
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Principle of the 
MIGA instrument 
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Principle of atom interferometry 

 Probe the local phase of a laser beam using free falling atoms 

 Mach-Zehnder like interferometer using conterpropagating lasers 

AI output: 𝑃 ∝ cos ΔΦ  

Local accelaration  
of the laser/atom 

2𝑘 =
4𝜋

𝜆
=

4𝜋𝜈0

𝑐
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Interrogation time 2𝑇 ≈ 0.5 𝑠 ; Phase sensitivity = 1/SNR ~ 1 mrad/shot  

Acceleration sensitivity ∼ 10−9 𝑚. 𝑠−2/ 𝐻𝑧 

Gravity gradient sensitivity ∼ 10−13 𝑠−2/ 𝐻𝑧     resolve 1 ton at 100 m 

𝐿 = 200 𝑚 cavity 

Principle & orders of magnitude 

Interferometer phase shift at position x :  

Rb87 atoms: 

𝜆 = 780 𝑛𝑚 
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GW detection 

Calculation of the Interferometer phase shift taking into account: 

• Laser frequency noise du(t) 

• Vibration of the mirrors Dx1(t) and Dx2(t) 

• Strain due to the gravitational wave h(t) 

• Local inertial effects  Gravity noise 

Position noise is common ! 
 No need for high vibration isolation 
(different from optical GW detectors sensitive to position noise) 

W. Chaibi, RG, B. Canuel, in preparation 
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GW detection 

W. Chaibi, RG, B. Canuel, in preparation 

Insensitive to position noise of the optics ! 

Differential signal: 

Gravity gradient noise 
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Gravity gradient (GG) noise 

Fundamental limit to ground-based GW detectors 

• Gravity gradient noise due to nearby mass fluctuations (tidal effect) 

• Big limitation for GW detection below 10 Hz ….  
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Gravity gradient (GG) noise 

Advantage of AI sensors: it is possible to spatially resolve gravity ! 

• GW have long wavelength (3 × 108 𝑚 @ 1 Hz) while GG have short 

characteristic length of variation (1 m – few km) 

• Correlations between distant sensors provide information on the GG noise 

and allows to discriminate it from the GW signal 

W. Chaibi, RG, B. Canuel, in preparation 
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Typical GW sensitivity 

A challenging project for atom optics ! 

Many cold atoms 
Large physical separation 

(Large Momentum Transfer  
Beam Splitters) 

Large scale 
 antenna 

Target of MIGA: 𝟏𝟎−𝟏𝟔 strain sensitivity within 5 years 
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MIGA subsytems: 
status 
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MIGA geometry 

π 

π/2 

30 cm 

Cold atom cloud 
launching 

Detection 

π 

200 m 

780 nm 

780 nm 
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Cold atom source at SYRTE 

• Design similar to cold atom 
fountains and inertial sensors.  

• Rb 87 atoms trapped in a 3D 
MOT loaded by a 2D MOT. 

• 108 atoms launched on a 
vertical trajectory at 4 m/s. 

• Sets of Raman transitions to 
prepare of pure magnetic state 
and for velocity selection. 

• Detection of transition 
probability by fluorescence of 
the cloud. 

2DMOT 

Interferometer 
Bragg beams 

3DMOT 

Preparation-Detection 
zone 

π 

π/2 

Design by Louis Amand 
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MIGA other subsytems 

• SYRTE (Paris) : cold atom source and detection system 

• LP2N (Bordeaux): cavity control, vacuum tube 

• ARTEMIS (Nice): cavity mirror suspensions 

• µQuans (Bordeaux): laser system 

• LSBB (Rustrel): tunnels & site management 
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Close perspectives 

• Cold atom source assembly & characterization at SYRTE (Oct. 2014) 

• AI prototype and suspensions will be available in Oct. 2014 (Bordeaux) 

  10 m cavity prototype  

• Start commissioning of the prototype mid 2015 (Bordeaux) 

• Start Gallery preparation beginning of 2015 (LSBB) 

• MIGA installation mid 2016 (LSBB) 
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Conclusion 

MIGA: an instrument to study various aspects of gravity 

• Geosciences  high stability of AI sensors 

• Astrophysics  complement to current detectors 

 

An interdisciplinary collaboration 

 

Many challenges, in particular in atomic physics ! 



Thank you ! 

PhDs and postdocs are welcome ! 

Louis Amand Arnaud Landragin 

W. Chaibi (Nice) 

B. Canuel, A. Bertoldi, P. Bouyer (Bordeaux) 
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GW sources in the 0.1 – 10 Hz band 

From J. Harms et al, PRD 88, 122003 (2013) 

Neutron star binaries 

Amplitude of GW Duration of GW 

Rate for ~ 1 solar Mass neutron star in Milky Way like galaxies: 1 – 1000 /Myr 

J Abadie et al 2010 Class. Quantum Grav. 27 173001 

Most probable sources : White Dwarf binaries in the Milky-Way 
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Some title 
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Some title 
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Some title 
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Some title 
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