Transverse Focusing Effects in the Zeeman Deceleration of Hydrogen Atoms

> <u>Katrin Dulitz</u> Tim Softley Research Group, Oxford

> > Lille, July 3, 2014

Outline

- (1) Motivation
- (2) Basics of Zeeman Deceleration
- (3) Transverse Focusing of Hydrogen Atoms
- (4) Zeeman Deceleration of Light Metastable Atoms

(1) Chemistry at mK Temperatures

Now: buffer gas cooling + ion trap [Henson et al., Science, 338, 234-238 (2012)]

(1) This Research Project

Benefits of a Zeeman decelerator:

- a) Deceleration of open-shell atoms/molecules
- b) Internally and translationally cold beams (mK regime)
- c) Tunable collision energies
- d) Quantum-state selectivity

Paul trap Ca⁺ - CO₂⁺ Coulomb crystal

(1) This Research Project

Requirements:

- Good overall transmission through the decelerator
- Effective particle focusing into the ion trap

$$CO_{2}^{+} + H \longrightarrow COH^{+} + O$$

$$k_{bi} = 4.7 \cdot 10^{-10} \text{ cm}^{3} \text{ s}^{-1} (15 - 300 \text{ K}^{*})$$

$$f = 10 \text{ Hz} \quad PULSED \text{ BEAM!}$$

$$t_{pulse} = 40 \text{ }\mu\text{s}$$

* [Borodi et al., Int. J. Mass. Spectrom., 280, 218 (2009)]

(3) Experiments on Transverse Focusing

(3) Experiments on Transverse Focusing

a) Reduced position $\kappa_{\rm 0}$

 $I_{\rm foc} = -30 \text{ A}$ I = 243 A $v_0 = 500 \text{ m/s}$

Reference data at B = 0 and without the focusing coil taken on a three-shot basis

(3) Experiments on Transverse Focusing

b) Current to focusing coil

- Experimental data
- -- Simulation (all particles)
- Simulation (only particles inside laser focus)

Same current direction: No signal increase

Reverse current direction: Formation of a temporally varying quadrupole field that increases transverse particle confinement

(4) Zeeman Deceleration of Light Metastable Atoms

Pulsed valve assembly

Design adapted from: PSP Vacuum Technology, ELS 100

Pulsed electron gun

100 eV, 1-2 mA

Thanks to James Bull (ex Vallance group, now at Durham University, Neville Baker and Howard Lambourne (PTCL workshops) **Metastable Species**

He(2³S₁)

a)

b)

N(²D) via electron impact dissociation of N₂

$$N_2 \xrightarrow{e} N(^4S) + N(^2D)$$

[Cosby, J. Chem. Phys., 98, 9544 (1993)]

(4) Zeeman Deceleration of He(2³S₁)

Deceleration:

243 A, 12 coils, v_0 = 505 m/s 1:3 mixture He in <u>Ar</u>, 6 bar, T_v = -130°C

Detection:

(1+1) REMPI via 3³P_J state, 389 nm

Katrin Dulitz

(4) Towards Zeeman Deceleration of N(²D)

Detection:

(2+1) REMPI via 3p ²S_{1/2} state, 269 nm

Acknowledgements

Tim Softley group

Atreju Tauschinsky

Electronics & Mechanical workshops

Neville Baker

Andrew Green

Collaborators

Frédéric Merkt

Hansjürg Schmutz

Alex Wiederkehr

Nicolas Vanhaecke

Bas van de Meerakker

Katrin Dulitz