Bose-Einstein condensates and antiferromagnetic interactions

An illustration of symmetry breaking

Jean Dalibard *Collège de France and Laboratoire Kastler Brossel*

The simplest many-body system

Quantum fluid with N bosons

Continuous degrees of freedom $ec{r_i}, \ ec{p_i}$ infinite Hilbert space

Discrete degrees of freedom $\vec{s_i}$ finite Hilbert space

We will look for a situation where the external degrees of freedom are frozen

To first approximation, all atoms occupy the ground state of a tight laser trap

Only the spin degrees of freedom remain relevant (Single Mode Approximation = SMA):

Corresponding interactions: $V_{\text{spin}} = \alpha \sum_{i < j} \vec{s_i} \cdot \vec{s_j}$

lpha>0 : antiferromagnetic

Motivations for spinor physics (also beyond SMA)

Stamper-Kurn & Ueda Rev. Mod. Phys. (2013)

Coherent spin oscillation, spin mixing, dynamical instabilities Georgia Tech, Hamburg, Hannover, Mainz-Munich, NIST, ...

Spin squeezing & entanglement

Georgia Tech, Hannover, Heidelberg, ...

Quenched dynamics and pre-thermalization phenomena

Berkeley, Georgia Tech, Hamburg,...

Topological defects

Boulder, MIT, Rochester, Seoul, ...

Model for Heisenberg spin lattice systems

Dipolar gases

Stuttgart, Hamburg, Innsbruck, Paris-Nord, Boulder, Stanford, ...

How to get non-trivial thermodynamics within SMA

$$H = \alpha \sum_{i < j} \vec{s}_i \cdot \vec{s}_j + \text{Zeeman effect} \qquad \qquad \vec{B} \text{ parallel to } z$$

Constraint: conservation of magnetisation

- Consider the total spin $\vec{S} = \sum_{i} \vec{s}_{i}$ Then : $[H, S_z] = 0$
- For an assembly of (effective) spins ½, once the initial numbers of $|s_z=+rac{1}{2}
 angle$ and $|s_z=-rac{1}{2}
 angle$ are known, nothing can happen

• For an assembly of spins 1, an interesting dynamics can still take place thanks to

 $|s_z = 0\rangle + |s_z = 0\rangle \iff |s_z = +1\rangle + |s_z = -1\rangle$

Our setup: a BEC of ²³Na atoms in their F = 1 hyperfine state

Example: Ground state in the absence of external magnetic field

For $\alpha > 0$, the ground state is the singlet state |S=0
angle(total spin zero), which corresponds to a strongly entangled state of the N spins 1

 $H = \frac{\alpha}{2}\vec{S}^2 + \text{constant}$

Law, Pu, Bigelow (1998) Castin & Herzog (2000) Ho & Yip (2000)

Outline of the talk

- 1. Experimental setup and control of magnetisation
- 2. Phase diagram of a BEC with anti-ferromagnetic interaction (within SMA)
- 3. The ground state of an anti-ferromagnetic BEC: A paradigm example of symmetry breaking in Quantum Mechanics

PhD students: Vincent Corre, Camille Frapolli, Lingxuan Shao

The ENS team

Postdoc: Tilman Zibold

Permanent: Fabrice Gerbier, Jean Dalibard

Former members: Luigi De Sarlo, Emmanuel Mimoun, David Jacob

Sodium BEC in F=1 hyperfine state: Preparation of the sample

Room temperature vapour cell of Sodium (using UV light-induced desorption)

Magneto-optical trap in the vapour cell

Evaporation and Bose-Einstein condensation in the F=1 ground state in a crossed dipole trap + dimple $\omega/2\pi \approx 1~{\rm kHz}$

quasi-pure BEC with 6000 atoms

Between ideal gas BEC and Thomas-Fermi regime: $E_{
m int} \approx \hbar \omega$

Magnetisation: Detection and control

Diagnostic of the sample by Stern-Gerlach analysis

Check of the single-mode approximation: Same spatial profile for $s_z = -1, 0, +1$

In the absence of any specific procedure, the magnetisation of the sample is

$$M_z = \frac{N_{+1} - N_{-1}}{N_{+1} + N_0 + N_{-1}} \approx 0.5$$

(optical pumping, evaporation, ...)

We can decrease or increase this value at will:

Depolarization with a radiofrequency magnetic field

Lowers M_z to any adjustable value between 0.5 and 0

Spin distillation through evaporation in the presence of a magnetic gradient

Raises M_z up to 0.98

Effective anti-ferromagnetic interactions

Real magnetic interactions (dipole-dipole) are negligible at our temperature scale Only van der Waals contact interactions play a significant role

For a collision between two spin 1 atoms, the total spin can be:

S = 0 (symmetric spin state)Ho (1998)S = 1 (anti-symmetric spin state)Ohmi & Machida (1998)S = 2 (symmetric spin state)Ohmi & Machida (1998)

Since the orbital state is symmetric (all atoms in the same spatial mode), only the S = 0 and S = 2 channels are relevant \longrightarrow two scattering lengths a_0 and a_2

$$V_{1,2} = \delta(\vec{r_1} - \vec{r_2}) \left[\bar{g} + g_s \vec{s_1} \cdot \vec{s_2} \right] \checkmark \frac{\bar{g} \propto \frac{a_0 + 2a_2}{3}}{g_s \propto \frac{a_2 - a_0}{3}} \qquad \text{Na: } g_s > 0 \text{ (antiferro)} \\ \text{Rb: } g_s < 0 \text{ (ferro)}$$

Leads at the many-body level to
$$V_{spin} = \alpha \sum_{i < j} \vec{s}_i \cdot \vec{s}_j$$
 $\alpha = \frac{g_s}{\mathcal{V}_{eff}}$

Mean energy per atom: $N\alpha \approx 100 \text{ Hz} = 5 \text{ nK}$

Outline of the talk

- 1. Experimental setup and control of magnetisation
- 2. Phase diagram of a BEC with anti-ferromagnetic interaction (within SMA)
- 3. The ground state of an anti-ferromagnetic BEC: A paradigm example of symmetry breaking in Quantum Mechanics

Zeeman effect : linear vs. quadratic contributions

Linear Zeeman effect:

$$V_{\text{Zeeman}}^{(1)} = -\mu B S_z = -\mu B (N_{+1} - N_{-1})$$

But S_z is a conserved quantity: $V_{\rm Zeeman}^{(1)}$ does not contribute to the dynamics of the system

$$|s_z = 0\rangle + |s_z = 0\rangle \quad \longleftrightarrow \quad |s_z = +1\rangle + |s_z = -1\rangle$$

Quadratic Zeeman effect:

$$V_{\text{Zeeman}}^{(2)} = -qB^2N_0 + \text{constant}$$

For the F=1 ground state of sodium: $q = 277 \text{ Hz/G}^2$

 $q>0\,$: favours the accumulation of atoms in $\,s_z=0\,$

— competition with anti-ferromagnetic interactions

Ground state of the spin assembly in a magnetic field: a mean-field approach

Minimisation of the energy associated with the Hamiltonian $H = rac{lpha}{2}S^2 - eta N_0$

Trial wave functions: all atoms occupy the same spin state $|\psi\rangle = \begin{pmatrix} \sqrt{n_{+1}} e^{i\psi_{+1}} \\ \sqrt{n_0} e^{i\phi_0} \\ \sqrt{n_{-1}} e^{i\phi_{-1}} \end{pmatrix}$

Second-order phase transition

For $\frac{\beta}{N\alpha} > 1 - \sqrt{1 - M_z^2}$ the three components $s_z = +1, s_z = 0, s_z = -1$ co-exist

Below this value, only $s_z = +1$ and $s_z = +1$ are present. Anti-ferromagnetic interactions dominate

Zhang, Yi, You (2003)

Experimental determination of the phase diagram

Choose a given magnetisation (here M_z =0.5) and measure the fraction n_0 of atoms in s_z =0

Fraction n_0 for various M_z and magnetic fields no adjustable parameters Jacob et al., 2012

> Previous measurements: NIST (2009) for $M_z > 0.5$ Georgia Tech (2011) $\beta > 0$ and < 0, not SMA

Outline of the talk

- 1. Experimental setup and control of magnetisation
- 2. Phase diagram of a BEC with anti-ferromagnetic interaction (within SMA)
- 3. The ground state of an anti-ferromagnetic BEC: A paradigm example of symmetry breaking in Quantum Mechanics

The remarkable case of zero magnetisation

Description of the ground state of the system in the isotropic case $M_z = 0, B = 0$

Transition from $n_0 = 1/3$ to $n_0 = 1$ when *B* increases

The ground state in zero field and zero magnetisation

$$H = \frac{\alpha}{2}\vec{S}^2 + {\rm constant}$$

Exact result (N even): singlet state $|S = 0\rangle$ Unique, breaks no symmetry

Best approximation (up to 1/N) within the mean-field ansatz: $\rho_{\text{mean field}} = \frac{1}{4\pi} \int |N: s_{\vec{u}} = 0\rangle \langle N: s_{\vec{u}} = 0| \ d^2u$ Statistical mixture of states where all atoms have a zero

Statistical mixture of states where all atoms have a zero spin component (polar state) along an arbitrary direction \vec{u}

Each state of the mixture breaks the rotational symmetry

Both approaches lead to
$$N_0 = \frac{N}{3}$$
 and $\Delta N_0 = \frac{2}{3\sqrt{5}}N \approx 0.30 N$

Large (super-Poissonian) fluctuations of N_0 in a Stern & Gerlach measurement along z

These results for N_0 and ΔN_0 still hold at non-zero temperature, provided $k_{\rm B}T \ll N^2 \alpha$ De Sarlo *et al.*, 2013

Experimental investigation of the zero magnetic field case

Series of shots prepared in the same experimental conditions $M_z = 0, B = 0$

We observe indeed large (super-Poissonian) fluctuations of N_0 !

Measured standard deviation:

 $\Delta N_0 \approx 0.27N$

to be compared with the prediction $\Delta N_0 \approx 0.30 N$

Fragmented BEC: three macroscopically populated single-particle states Mueller, Ueda, Baym, Ho (2006)

In the presence of quadratic Zeeman effect: spin thermometry

 $H = \frac{\alpha}{2}S^2 - \beta N_0$

Dotted line: "thermal" mean-field theory + non-zero uncondensed fraction

Expected width at Half Maximum $\beta \approx 7 \ k_{\rm B} T_{\rm spin} / N \quad \Rightarrow \quad T_{\rm spin} \approx 40 \ {\rm nK}$ β goes to zero at the thermodynamic limit

Transition from the non polarized state

$$N_0 = \frac{N}{3} \qquad \qquad \Delta N_0 \approx 0.30N$$

to the polarized state

$$N_0 = N \qquad \qquad \Delta N_0 = 0$$

Outlook: symmetry breaking and the measurement problem in QM

Consider again the zero-field & zero-magnetisation case. Two possible descriptions:

$$S = 0\rangle \qquad \qquad \rho_{\text{mean field}} = \frac{1}{4\pi} \int |N:s_{\vec{u}} = 0\rangle \langle N:s_{\vec{u}} = 0| \ d^2u$$

A given shot of the Stern & Gerlach experiment provides N_{+1} , N_0 , N_{-1} :

In the mean-field (broken symmetry) approach, the system is before any measurement in one randomly chosen $|N:s_{\vec{u}}=0\rangle$ and the measurement "reveals" the value of \vec{u} through $u_z^2 = N_0/N$

N.B.: Both points of view are equivalent (up to 1/N corrections)!

Very similar to the problem of the relative phase of two independent condensates Ashhab & Leggett

Connection with other symmetry breaking mechanisms

Physical system	Order parameter	Symmetry	Breaking field
Crystal	Position	Translation	Pinning potential
BEC or laser	Macroscopic wave function or electromagnetic field	Phase U(1)	Particle or photon seed
Spin 1 BEC antiferromagnet	Population N_0 of $ s_z=0 angle$	Rotation (spin space)	Zeeman effect (quadratic)