Generation of a macroscopic spin singlet in cold atomic ensemble

<u>Naeimeh Behbood</u>¹, M. Napolitano¹, G. Colangelo¹, F. Martin Ciurana¹, G.Toth², R. J. Sewell¹, Morgan W. Mitchell^{1,3}

¹ICFO – Institute of Photonic Sciences
 ²Department of Theoretical Physics, Bilbao, Spain
 ³ICREA – Catalan Institution for Advanced Research

<u>arXiv:1403.1964</u>

Institut de Ciències Fotòniques

MINISTERIO DE CIENCIA E INNOVACIÓN

Singlet state

$$|\Psi
angle = rac{1}{\sqrt{2}}(|\uparrow\downarrow
angle - |\downarrow\uparrow
angle)$$

Zero spin $\mathbf{j} = \mathbf{0}$

No fluctuations
$$\Delta \mathbf{j} = \mathbf{0}$$

What is a macroscopic spin singlet ?

$$Var(F) = 0$$

F is collective angular momentum

$$\mathbf{F} = \sum_{l=1}^{N_A} \mathbf{f}_l$$

Doesn't the uncertainty principle forbid this ?

$\delta F_x \delta F_z \geq \frac{1}{2} |\langle F_y \rangle| = 0$

Doesn't the uncertainty principle forbid this ?

 $\delta F_x \delta F_z \ge \frac{1}{2} |\langle F_y \rangle| = 0$

 $\delta F_x \delta F_y \ge 0$ $\delta F_y \delta F_z \ge 0$ $\delta F_z \delta F_x > 0$

Doesn't the uncertainty principle forbid this ?

G. Toth, MWM, NJP **12** 053007 (2010) Phys. Rev. A 87, 021601(R) (2013)

How do you know that you have made a MSS ?

 $\xi^2 \equiv \frac{\Delta F_x^2 + \Delta F_y^2 + \Delta F_z^2}{N_A f}$ spin squeezing parameter

condition for squeezing

 $\xi^{2} < 1$

number of atoms in singlets

 $N_A(1-\xi^2)$

Vitagliano, Hyllus, Egusquiza and Tóth PRL (2011) G. Toth, M. W. Mitchell, NJP **12** 053007 (2010)

Motivation: Gradient magnetometry with singlets

I. Urizar-Lanz, et al, Phys. Rev. A 88, 013626 (2013)

Motivation

quantum spin correlations

Singlet as ground state of many spin model system

P. Hauke, et al, Phys. Rev. A, 87, 021601(2013)

T. Iskhakov, et al, PRL 106, 113602(2011)

Measurement-induced entanglement generation

Spin squeezing by interactions Oberthaler, Treutlein, Vuletic, Chapman, Klempt

Spin squeezing by measurement Kuzmich, Mabuchi, Polzik, Vuletic, Takahashi, Thompson, Mitchell

Measurement-induced entanglement generation

Spin singlets by interactions Greiner, Esslinger Spin singlets by measurement This work.

How can you make a MSS ?

Quantum simulator approach : Engineer anti-ferromagnet Cool to ground state

D. Greif, et. al., Science, **340** 1307 (2013) J. Simon et. al. , Nature, **472**, 307 (2011)

Measurement-based approach :

- Quantum non-demolition
- measurements
- **Controlled rotations**

Vitagliano, Hyllus, Egusquiza and Tóth PRL (2011) G. Toth, M. W. Mitchell, NJP **12** 053007 (2010)

QND measurement

arXiv:1403.1964 (2014)

Stroboscopic probing

Behbood, APL 102, 173504 (2013)

Stroboscopic probing

Behbood, APL 102, 173504 (2013)

arXiv:1403.1964 (2014)

Experimental system

${\sim}10^{6}~^{87}\text{Rb}$ atoms at 25µK f=1 ground-state

1 μs long pulses linearly polarized "mode matched" to atoms 0.7 GHz from D₂ line ¹ effective OD > 50
² Sensitivity 512 spins, < SQL
³ QND measurement
⁴ spin squeezing

1 Kubasik, et al. PRA 79, 043815 (2009) 2 Koschorreck, et al. PRL 104, 093602 (2010) 3 Koschorreck, et al. PRL 105, 093602(2010) 4 Sewell, et al. PRL 109, 253605 (2012)

Experimental sequence

Experimental sequence

Experimental sequence

Vector non-demolition measurements

first vector measurement

first vector measurement

second vector measurement

Vector non-demolition measurements

Quantifying squeezing by conditional variance

Conclusions + Outlook

Vector non-destructive spin measurements

Macroscopic spin singlets 50 % singlet fraction

arXiv:1403.1964 (2014)

Next steps : Gradiometry

Thanks

LukasRicardoSimon ThomasMorganGianvitoNataliSlodickaJimenezCoopVanderbruggen MitchellLuciveroMartinez

FedericaFerran SilvanaJoannaMarioBeduiniMartin Palacios ZielinskaNapolitano

GilRobertGiorgioTriginerSewellColangelo

Thank You!

Geza Toth, and Iñigo Urizar Lanz, UPV

TSS preparation

Stroboscopic probing

Two orthogonal input coherent spin states

Extract vector field components and spin coherent time Dephasing due to gradient fields

$$\theta_{1}(t) = \frac{G}{|B|^{2}} [B_{z}^{2} + [B_{x}^{2} + B_{y}^{2}] \cos(\gamma |B|t) e^{t/T_{2}} F_{z}(0)$$

$$\theta_{2}(t) = \frac{G}{|B|^{2}} [B_{y} B_{x} (1 - \cos(\gamma |B|t) e^{t/T_{2}} + B_{x} |B| \sin(\gamma |B|t) e^{t/T_{2}}] F_{y}(0)$$

Behbood, APL 102, 173504 (2013)

How well can this work ?

Generation of macroscopic singlet states in atomic ensembles

G. Toth, M. W. Mitchell, NJP **12** 053007 (2010) Phys. Rev. A 87, 021601(R) (2013)

Vector non-demolition measurements

first vector measurement

second vector measurement

Motivation: Gradient magnetometry with singlets

I. Urizar-Lanz, et al, Phys. Rev. A 88, 013626 (2013)